PC457L0NIP

Features

- 1. High resistance to noise (CMR:MIN. 15kV/µs)
- 2. High speed response

(t_{PHL}:MAX. 0.8µs, t_{PLH}:MAX. 0.8µs)

Aboolute Meximum Detinge

- 3. Mini-flat package
- 4. Isolation voltage (V_{iso (rms)}: 3.75kV)
- 5. Recognized by UL, file No. E64380 (Model No. PC457L)

Applications

1. Programmable controller

2. Inverter

	igs ($T_a=25^{\circ}C)$			
Parameter		Symbol	Rating	Unit	
Input	*1 Forward current	I_F	25	mA	
	Reverse voltage	V _R	5	V	
	*2 Power dissipation	Р	45	mW	
Output	Supply voltage	V _{CC}	-0.5 to +30	V	
	Output voltage	Vo	-0.5 to +20	V	
	Output current	Io	8	mA	
	*3 Power dissipation	Po	100	mW	
*3 Total power dissipation		P _{tot}	100	mW	
*4 Isolation voltage		Viso (rms)	3.75	kV	
Operating temperature		T _{opr}	-55 to +100	°C	
Storage temperature		T _{stg}	-55 to +125	°C	
*5 Soldering temperature		T _{sol}	270	°C	

*1 When ambient temperature goes above 70°C, the power dissipation goes down at $0.8 m A^{\circ}\!C$

*2 When ambient temperature goes above 70°C, the power dissipation goes down at $0.8 mW/^{\circ}C$

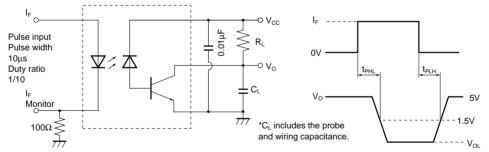
*3 When ambient temperature goes above 70°C, the power dissipation goes down at $1.8 mW/^{\circ}C$

*4 40 to 60%RH, AC for 1minute

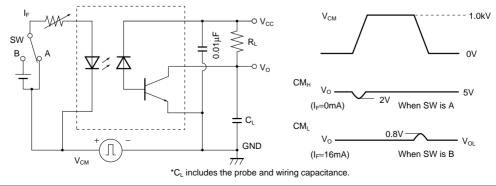
*5 For 10s

High Speed and High CMR *OPIC Photocoupler

* "OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.


.....

■ Electro-optical Characteristics (T _a =25°C)										
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Input	Forward voltage	VF	I _F =16mA	-	1.7	1.95	V			
	Reverse current	I _R	V _R =5V	-	-	10	μA			
	Terminal capacitance	Ct	$V_F=0V, f=1MHz$	-	60	250	pF			
Output	High level output current (1)	I _{OH (1)}	$I_F=0, V_{CC}=5.5V, V_0=5.5V$	-	3	500	nA			
	High level output current (2)	I _{OH (2)}	$I_F=0, V_{CC}=15V, V_{O}=15V$	-	-	1.0	μΑ			
	^{*6} High level output current (3)	I _{OH (3)}	I _F =0, V _{CC} =15V, V _O =15V	-	-	50	μΑ			
	High level supply current (1)	I _{CCH (1)}	I _F =0, V _{CC} =15V, V _O =open	-	0.02	1.0	μΑ			
	^{*6} High level supply current (2)	I _{CCH (2)}	I _F =0, V _{CC} =15V, V _O =open	-	_	2.0	μA			
	Low level supply current	I _{CCL}	I _F =16mA, V _{CC} =15V, V _O =open	-	120	-	μΑ			
	Low level output voltage	V _{OL}	I _F =16mA, V _{CC} =4.5V, I _O =2.4mA	-	_	0.4	V			
Transfer charac- teristics	Current transfer ratio (1)	CTR (1)	I _F =16mA, V _{CC} =4.5V, V _O =0.4V	19	-	50	%			
	^{*6} Current transfer ratio (2)	CTR (2)	I _F =16mA, V _{CC} =4.5V, V _O =0.4V	15	-	-	%			
	^{*7} "High→Low" propagation delay time	t _{PHL}	$I_F = 16 \text{mA}, V_{CC} = 5 \text{V}$	-	0.2	0.8	μs			
	^{*7} "Low→High" propagation delay time	t _{PLH}	$R_L=1.9\Omega$	-	0.6	0.8	μs			
	^{*8} Instantaneous common mode rejection voltage "Output : High level"	CM _H	$\begin{array}{l} I_{F}\!\!=\!\!0,R_{L}\!\!=\!\!1.9k\Omega\\ V_{CC}\!\!=\!\!5V,V_{CM}\!\!=\!\!1.0kV_{(p\text{-}p)} \end{array}$	15	30	_	kV/µs			
	*8 Instantaneous common mode rejection voltage "Output : Low level"	CML	$\begin{array}{l} I_{F}\!\!=\!\!16mA,R_{L}\!\!=\!\!1.9k\Omega \\ V_{CC}\!\!=\!\!5V,V_{CM}\!=\!\!1.0kV_{(p\cdot p)} \end{array}$	-15	-30	_	kV/µs			
	Isolation resistance	R _{ISO}	DC=500V, 40 to 60%RH	5×10 ¹⁰	1×10 ¹¹	-	Ω			
	Floating capacitance	C _f	V=0, f=1MHz	-	0.6	1.0	pF			


*6 T_a=0 to 70°C

*7 Refer to Fig.1 *8 Refer to Fig.2

Fig.1 Test Circuit for Propagation Delay Time

Fig.2 Test Circuit for Instantaneous Common Mode Rejection Voltage

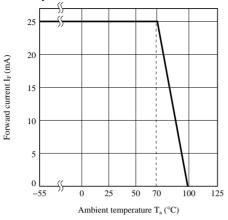


Fig.5 Forward Current vs. Forward Voltage

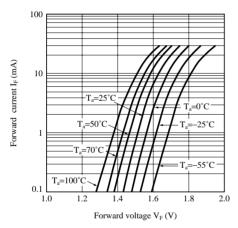
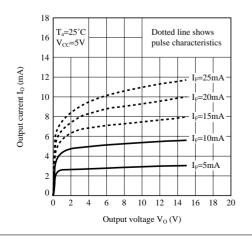



Fig.7 Output Current vs. Output Voltage

Fig.4 Power Dissipation vs. Ambient Temperature

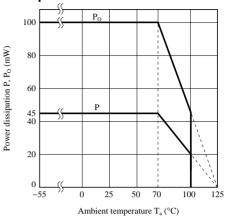
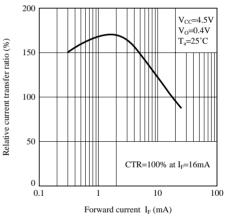
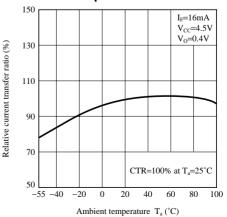
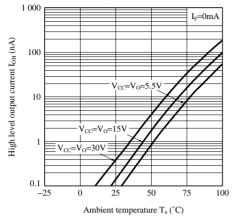


Fig.6 Relative Current Transfer Ratio vs. Forward Current

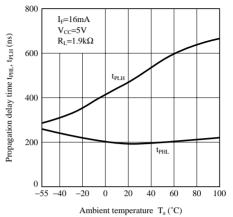

Fig.8 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.9 High Level Output Current vs. Ambient Temperature

Fig.10 Propagation Delay Time vs. Ambient Temperature

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- --- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.